Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[N, N^{\prime}-Bis(2-oxidonaphthylmethylidene)-ethane-1,2-diamine- $\left.\kappa^{4} O, N, N^{\prime}, O^{\prime}\right]$ copper(II)

Zong-Xiao Li and Xin-Li Zhang*

Department of Chemistry and Chemical
Engineering, Baoji College of Arts and Sciences, Baoji 721007, People's Republic of China

Correspondence e-mail:
baojizhangxinli@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.067$
$w R$ factor $=0.155$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]Printed in Great Britain - all rights reserved

The title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, has been synthesized and characterized. It is a mononuclear copper(II) complex. The Cu atom is four-coordinated by two N atoms and two O atoms of the bis-Schiff base ligand in a slightly distorted square-planar geometry.

Comment

Transition metal complexes containing Schiff base ligands have been of great interest for many years (Yamada, 1999). These complexes play an important role in the coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures. As an extension of work on the structural characterization of Schiff base complexes, a mononuclear copper(II) complex, (I), is reported here.

(I)

Complex (I) is a mononuclear copper(II) compound (Fig. 1). The central Cu atom is coordinated by two O atoms and two N atoms of the bis-Schiff base ligand. This $\mathrm{CuO}_{2} \mathrm{~N}_{2}$ coordination has a slightly distorted square-planar geometry. The Cu atom is 0.012 (4) \AA out of the mean plane of the four donor atoms. The average $\mathrm{Cu}-\mathrm{O}$ bond length of 1.843 (3) \AA (Table 1) is a little shorter than the corresponding value of 1.880 (2) \AA observed in a similar Schiff base copper(II) complex (Burgess et al., 2001). The average $\mathrm{Cu}-\mathrm{N}$ bond distance of 1.833 (3) \AA is much shorter than the value of 2.009 (3) \AA observed in the same complex. The $\mathrm{N}-\mathrm{Cu}-\mathrm{O}$ trans angles are 178.47 (14) and $176.97(14)^{\circ}$, indicating a slight distortion of the square-planar coordination. Atom C 12 deviates from the $\mathrm{CuN}_{2} \mathrm{O}_{2}$ square plane by 0.125 (6) \AA, whereas C 13 deviates from it on the opposite side by 0.417 (6) \AA. The $\mathrm{CuN}_{2} \mathrm{O}_{2}$ square plane has dihedral angles of 4.4 (4) and $7.1(4)^{\circ}$ with the two naphthalene ring systems. The dihedral angle between the two naphthalene ring systems is $5.5(4)^{\circ}$.

Experimental

All chemicals used were commercially available (reagent grade). 2-Hydroxy-1-naphthaldehyde ($0.2 \mathrm{mmol}, 34.4 \mathrm{mg}$) and 1,2-diaminoethane ($0.1 \mathrm{mmol}, 6.0 \mathrm{mg}$) were dissolved in methanol (10 ml). The mixture was stirred for 1 h to give a clear yellow solution of L (0.1 mmol), where L is N, N^{\prime}-bis(2-hydroxynaphthylmethylidene)-ethane-1,2-diamine. To the solution of L was added a methanol

Received 21 May 2004
Accepted 9 June 2004 Online 19 June 2004
solution (12 ml) of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 20.0 \mathrm{mg})$ with stirring. After keeping the resulting solution at room temperature in air for 11 d , blue crystals were formed at the bottom of the vessel on slow evaporation of the solvent. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator over anhydrous CaCl_{2} (yield 61.9%). Analysis found: C $66.8, \mathrm{H} 4.3, \mathrm{~N}$ 6.4%; calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{CuN}_{2} \mathrm{O}_{2}$: C 67.0, H 4.2, $\mathrm{N} 6.5 \%$.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=429.94$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=17.644$ (4) А
$b=8.165$ (2) \AA
$c=12.922(3) \AA$
$\beta=99.99$ (3) ${ }^{\circ}$
$V=1833.4(7) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.697, T_{\text {max }}=0.888$
8092 measured reflections
$D_{x}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2872
reflections
$\theta=2.7-25.2^{\circ}$
$\mu=1.22 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.32 \times 0.18 \times 0.10 \mathrm{~mm}$

3743 independent reflections
3007 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-22 \rightarrow 22$
$k=-10 \rightarrow 4$
$l=-15 \rightarrow 16$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.155$
$S=1.15$
3743 reflections
262 parameters

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The crystal packing of (I), viewed along the b axis.

The authors thank Baoji College of Arts and Sciences for research grants.

References

Burgess, J., Fawcett, J., Palma, V. \& Gilani, S. R. (2001). Acta Cryst. C57, 277280.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yamada, S. (1999). Coord. Chem. Rev. 190-192, 537-555.

[^0]: (C) 2004 International Union of Crystallography

